001/* 002 * $RCSfile: StdDequantizer.java,v $ 003 * $Revision: 1.1 $ 004 * $Date: 2005/02/11 05:02:19 $ 005 * $State: Exp $ 006 * 007 * Class: StdDequantizer 008 * 009 * Description: Scalar deadzone dequantizer that returns integers 010 * or floats. 011 * This is a merger of the ScalarDZDeqInt and 012 * ScalarDZDeqFloat classes by Joel Askelof and Diego 013 * Santa Cruz. 014 * 015 * 016 * 017 * COPYRIGHT: 018 * 019 * This software module was originally developed by Raphaël Grosbois and 020 * Diego Santa Cruz (Swiss Federal Institute of Technology-EPFL); Joel 021 * Askelöf (Ericsson Radio Systems AB); and Bertrand Berthelot, David 022 * Bouchard, Félix Henry, Gerard Mozelle and Patrice Onno (Canon Research 023 * Centre France S.A) in the course of development of the JPEG2000 024 * standard as specified by ISO/IEC 15444 (JPEG 2000 Standard). This 025 * software module is an implementation of a part of the JPEG 2000 026 * Standard. Swiss Federal Institute of Technology-EPFL, Ericsson Radio 027 * Systems AB and Canon Research Centre France S.A (collectively JJ2000 028 * Partners) agree not to assert against ISO/IEC and users of the JPEG 029 * 2000 Standard (Users) any of their rights under the copyright, not 030 * including other intellectual property rights, for this software module 031 * with respect to the usage by ISO/IEC and Users of this software module 032 * or modifications thereof for use in hardware or software products 033 * claiming conformance to the JPEG 2000 Standard. Those intending to use 034 * this software module in hardware or software products are advised that 035 * their use may infringe existing patents. The original developers of 036 * this software module, JJ2000 Partners and ISO/IEC assume no liability 037 * for use of this software module or modifications thereof. No license 038 * or right to this software module is granted for non JPEG 2000 Standard 039 * conforming products. JJ2000 Partners have full right to use this 040 * software module for his/her own purpose, assign or donate this 041 * software module to any third party and to inhibit third parties from 042 * using this software module for non JPEG 2000 Standard conforming 043 * products. This copyright notice must be included in all copies or 044 * derivative works of this software module. 045 * 046 * Copyright (c) 1999/2000 JJ2000 Partners. 047 * */ 048package jj2000.j2k.quantization.dequantizer; 049 050import jj2000.j2k.wavelet.synthesis.*; 051import jj2000.j2k.entropy.decoder.*; 052import jj2000.j2k.quantization.*; 053import jj2000.j2k.codestream.*; 054import jj2000.j2k.entropy.*; 055import jj2000.j2k.decoder.*; 056import jj2000.j2k.image.*; 057import jj2000.j2k.io.*; 058 059import java.io.*; 060 061/** 062 * This class implements a scalar dequantizer with deadzone. The output can be 063 * either integer ('int') or floating-point ('float') data. The dequantization 064 * step sizes and other parameters are taken from a StdDequantizerParams 065 * class, which inherits from DequantizerParams. 066 * 067 * <P>Sign magnitude representation is used (instead of two's complement) for 068 * the input data. The most significant bit is used for the sign (0 if 069 * positive, 1 if negative). Then the magnitude of the quantized coefficient 070 * is stored in the next most significat bits. The most significant magnitude 071 * bit corresponds to the most significant bit-plane and so on. 072 * 073 * <P>When reversible quantization is used, this class only converts between 074 * the sign-magnitude representation and the integer (or eventually 075 * fixed-point) output, since there is no true quantization. 076 * 077 * <P>The output data is fixed-point two's complement for 'int' output and 078 * floating-point for 'float' output. The type of output and the number number 079 * of fractional bits for 'int' output are defined at the constructor. Each 080 * component may have a different number of fractional bits. 081 * 082 * <P>The reconstruction levels used by the dequantizer are exactly what is 083 * received from the entropy decoder. It is assumed that the entropy decoder 084 * always returns codewords that are midways in the decoded intervals. In this 085 * way the dequantized values will always lie midways in the quantization 086 * intervals. 087 * */ 088public class StdDequantizer extends Dequantizer { 089 090 /** The quantizer type spec */ 091 private QuantTypeSpec qts; 092 093 /** The quantizer step sizes spec */ 094 private QuantStepSizeSpec qsss; 095 096 /** The number of guard bits spec */ 097 private GuardBitsSpec gbs; 098 099 /** The decoding parameters of the dequantizer */ 100 private StdDequantizerParams params; 101 102 /** The 'DataBlkInt' object used to request data, used when output data is 103 * not int */ 104 private DataBlkInt inblk; 105 106 /** Type of the current output data */ 107 private int outdtype; 108 109 /** 110 * Initializes the source of compressed data. And sets the number of range 111 * bits and fraction bits and receives the parameters for the dequantizer. 112 * 113 * @param src From where to obtain the quantized data. 114 * 115 * @param rb The number of "range bits" (bitdepth) for each component 116 * (must be the "range bits" of the un-transformed components). For a 117 * definition of "range bits" see the getNomRangeBits() method. 118 * 119 * @param qts The quantizer type spec 120 * 121 * @param qsss The dequantizer step sizes spec 122 * 123 * @see Dequantizer#getNomRangeBits 124 * 125 * @exception IllegalArgumentException Thrown if 'outdt' is neither 126 * TYPE_FLOAT nor TYPE_INT, or if 'param' specify reversible quantization 127 * and 'outdt' is not TYPE_INT or 'fp' has non-zero values, or if 'outdt' 128 * is TYPE_FLOAT and 'fp' has non-zero values. 129 * */ 130 public StdDequantizer(CBlkQuantDataSrcDec src,int[] utrb, 131 DecoderSpecs decSpec){ 132 super(src,utrb,decSpec); 133 134 if(utrb.length != src.getNumComps()){ 135 throw new IllegalArgumentException("Invalid rb argument"); 136 } 137 this.qsss = decSpec.qsss; 138 this.qts = decSpec.qts; 139 this.gbs = decSpec.gbs; 140 } 141 142 /** 143 * Returns the position of the fixed point in the output data for the 144 * specified component. This is the position of the least significant 145 * integral (i.e. non-fractional) bit, which is equivalent to the number 146 * of fractional bits. For instance, for fixed-point values with 2 147 * fractional bits, 2 is returned. For floating-point data this value does 148 * not apply and 0 should be returned. Position 0 is the position of the 149 * least significant bit in the data. If the output data is 'float' then 0 150 * is always returned. 151 * 152 * <P><u>Note:</u> Fractional bits are no more supported by JJ2000. 153 * 154 * @param c The index of the component. 155 * 156 * @return The position of the fixed-point, which is the same as 157 * the number of fractional bits. For floating-point data 0 is 158 * returned. 159 * */ 160 public int getFixedPoint(int c){ 161 return 0; 162 } 163 164 /** 165 * Returns the specified code-block in the current tile for the specified 166 * component, as a copy (see below). 167 * 168 * <P>The returned code-block may be progressive, which is indicated by 169 * the 'progressive' variable of the returned 'DataBlk' object. If a 170 * code-block is progressive it means that in a later request to this 171 * method for the same code-block it is possible to retrieve data which is 172 * a better approximation, since meanwhile more data to decode for the 173 * code-block could have been received. If the code-block is not 174 * progressive then later calls to this method for the same code-block 175 * will return the exact same data values. 176 * 177 * <P>The data returned by this method is always a copy of the internal 178 * data of this object, if any, and it can be modified "in place" without 179 * any problems after being returned. The 'offset' of the returned data is 180 * 0, and the 'scanw' is the same as the code-block width. See the 181 * 'DataBlk' class. 182 * 183 * @param c The component for which to return the next code-block. 184 * 185 * @param m The vertical index of the code-block to return, in the 186 * specified subband. 187 * 188 * @param n The horizontal index of the code-block to return, in the 189 * specified subband. 190 * 191 * @param sb The subband in which the code-block to return is. 192 * 193 * @param cblk If non-null this object will be used to return the new 194 * code-block. If null a new one will be allocated and returned. If the 195 * "data" array of the object is non-null it will be reused, if possible, 196 * to return the data. 197 * 198 * @return The next code-block in the current tile for component 'n', or 199 * null if all code-blocks for the current tile have been returned. 200 * 201 * @see DataBlk 202 * */ 203 public final DataBlk getCodeBlock(int c, int m, int n, SubbandSyn sb, 204 DataBlk cblk) { 205 return getInternCodeBlock(c,m,n,sb,cblk); 206 } 207 208 /** 209 * Returns the specified code-block in the current tile for the specified 210 * component (as a reference or copy). 211 * 212 * <P>The returned code-block may be progressive, which is indicated by 213 * the 'progressive' variable of the returned 'DataBlk' 214 * object. If a code-block is progressive it means that in a later request 215 * to this method for the same code-block it is possible to retrieve data 216 * which is a better approximation, since meanwhile more data to decode 217 * for the code-block could have been received. If the code-block is not 218 * progressive then later calls to this method for the same code-block 219 * will return the exact same data values. 220 * 221 * <P>The data returned by this method can be the data in the internal 222 * buffer of this object, if any, and thus can not be modified by the 223 * caller. The 'offset' and 'scanw' of the returned data can be 224 * arbitrary. See the 'DataBlk' class. 225 * 226 * @param c The component for which to return the next code-block. 227 * 228 * @param m The vertical index of the code-block to return, in the 229 * specified subband. 230 * 231 * @param n The horizontal index of the code-block to return, in the 232 * specified subband. 233 * 234 * @param sb The subband in which the code-block to return is. 235 * 236 * @param cblk If non-null this object will be used to return the new 237 * code-block. If null a new one will be allocated and returned. If the 238 * "data" array of the object is non-null it will be reused, if possible, 239 * to return the data. 240 * 241 * @return The next code-block in the current tile for component 'n', or 242 * null if all code-blocks for the current tile have been returned. 243 * 244 * @see DataBlk 245 * */ 246 public final 247 DataBlk getInternCodeBlock(int c, int m, int n, SubbandSyn sb, 248 DataBlk cblk) { 249 // This method is declared final since getNextCodeBlock() relies on 250 // the actual implementation of this method. 251 int j,jmin,k; 252 int temp; 253 float step; 254 int shiftBits; 255 int magBits; 256 int[] outiarr,inarr; 257 float[] outfarr; 258 int w,h; 259 boolean reversible = qts.isReversible(tIdx,c); 260 boolean derived = qts.isDerived(tIdx,c); 261 StdDequantizerParams 262 params = (StdDequantizerParams)qsss.getTileCompVal(tIdx,c); 263 int G = ((Integer)gbs.getTileCompVal(tIdx,c)).intValue(); 264 265 outdtype = cblk.getDataType(); 266 267 if (reversible && outdtype!=DataBlk.TYPE_INT) { 268 throw new IllegalArgumentException("Reversible quantizations "+ 269 "must use int data"); 270 } 271 272 // To get compiler happy 273 outiarr = null; 274 outfarr = null; 275 inarr = null; 276 277 // Get source data and initialize output DataBlk object. 278 switch (outdtype) { 279 case DataBlk.TYPE_INT: 280 // With int data we can use the same DataBlk object to get the 281 // data from the source and return the dequantized data, and we 282 // can also work "in place" (i.e. same buffer). 283 cblk = src.getCodeBlock(c,m,n,sb,cblk); 284 // Input and output arrays are the same 285 outiarr = (int[]) cblk.getData(); 286 break; 287 case DataBlk.TYPE_FLOAT: 288 // With float data we must use a different DataBlk objects to get 289 // the data from the source and to return the dequantized data. 290 inblk = (DataBlkInt) src.getInternCodeBlock(c,m,n,sb,inblk); 291 inarr = inblk.getDataInt(); 292 if (cblk == null) { 293 cblk = new DataBlkFloat(); 294 } 295 // Copy the attributes of the CodeBlock object 296 cblk.ulx = inblk.ulx; 297 cblk.uly = inblk.uly; 298 cblk.w = inblk.w; 299 cblk.h = inblk.h; 300 cblk.offset = 0; 301 cblk.scanw = cblk.w; 302 cblk.progressive = inblk.progressive; 303 // Get output data array and check its size 304 outfarr = (float[]) cblk.getData(); 305 if (outfarr == null || outfarr.length < cblk.w*cblk.h) { 306 outfarr = new float[cblk.w*cblk.h]; 307 cblk.setData(outfarr); 308 } 309 break; 310 } 311 312 magBits = sb.magbits; 313 314 // Calculate quantization step and number of magnitude bits 315 // depending on reversibility and derivedness and perform 316 // inverse quantization 317 if(reversible){ 318 shiftBits=31-magBits; 319 // For int data Inverse quantization happens "in-place". The input 320 // array has an offset of 0 and scan width equal to the code-block 321 // width. 322 for (j=outiarr.length-1; j>=0; j--) { 323 temp = outiarr[j]; // input array is same as output one 324 outiarr[j]=(temp >= 0) ? (temp>>shiftBits) : 325 -((temp&0x7FFFFFFF)>>shiftBits); 326 } 327 } 328 else{// Not reversible 329 if(derived){ 330 // Max resolution level 331 int mrl = src.getSynSubbandTree(getTileIdx(),c).resLvl; 332 step=params.nStep[0][0]* 333 (1L<<(rb[c]+sb.anGainExp+mrl-sb.level)); 334 } 335 else{ 336 step=params.nStep[sb.resLvl][sb.sbandIdx]* 337 (1L<<(rb[c]+sb.anGainExp)); 338 } 339 shiftBits=31-magBits; 340 341 // Adjust step to the number of shiftBits 342 step /= (1<<shiftBits); 343 344 switch (outdtype) { 345 case DataBlk.TYPE_INT: 346 // For int data Inverse quantization happens "in-place". The 347 // input array has an offset of 0 and scan width equal to the 348 // code-block width. 349 for (j=outiarr.length-1; j>=0; j--) { 350 temp = outiarr[j]; // input array is same as output one 351 outiarr[j] = (int)(((float)((temp >= 0) ? temp : 352 -(temp&0x7FFFFFFF)))*step); 353 } 354 break; 355 case DataBlk.TYPE_FLOAT: 356 // For float data the inverse quantization can not happen 357 // "in-place". 358 w = cblk.w; 359 h = cblk.h; 360 for (j=w*h-1, k=inblk.offset+(h-1)*inblk.scanw+w-1, 361 jmin = w*(h-1); j>=0; jmin -= w) { 362 for (; j>=jmin; k--, j--) { 363 temp = inarr[k]; 364 outfarr[j] = ((float)((temp >= 0) ? temp : 365 -(temp&0x7FFFFFFF)))*step; 366 } 367 // Jump to beggining of previous line in input 368 k -= inblk.scanw - w; 369 } 370 break; 371 } 372 } 373 // Return the output code-block 374 return cblk; 375 } 376}